추정 보조정리

Hwangjy9 (토론 | 기여)님의 2019년 1월 5일 (토) 22:54 판

개요

추정 보조정리(Estimation lemma)경로적분절댓값상계를 추정할 수 있게 하는 정리이다.

진술

복소함수 [math]\displaystyle{ f }[/math]가 경로 [math]\displaystyle{ \Gamma }[/math]에서 연속이고 [math]\displaystyle{ \Gamma }[/math] 위의 임의의 점 [math]\displaystyle{ z }[/math]에 대해 [math]\displaystyle{ |f(z)|\le M }[/math][math]\displaystyle{ M\in\mathbb{R} }[/math]이 존재하면, 다음 부등식이 성립한다.

[math]\displaystyle{ \left|\int_{\Gamma} f(z) dz\right|\le Ml(\Gamma) }[/math]

이때 [math]\displaystyle{ l(\Gamma) }[/math][math]\displaystyle{ \Gamma }[/math]의 길이이다.

증명

[math]\displaystyle{ \Gamma }[/math]에 포함된 매끄러운 곡선 [math]\displaystyle{ \gamma }[/math]에 대해 부등식이 성립함을 보이면 된다. [math]\displaystyle{ \gamma }[/math]의 분할 [math]\displaystyle{ P=\{z_1,z_2,\cdots, z_n\} }[/math]에 대응하는 리만 합에 대해 다음 부등식이 성립한다.

[math]\displaystyle{ \left|\sum_{k=1}^n f(c_k) \Delta z_k\right| \le M\sum_{k=1}^n |\Delta z_k|\le l(\gamma) }[/math]

그러면 [math]\displaystyle{ \Gamma=(\gamma_1,\gamma_2,\cdots,\gamma_k) }[/math]에 대해

[math]\displaystyle{ \begin{align} \int_{\Gamma} f(z)dz &= \int_{\gamma_1}f(z)dz + \int_{\gamma_2}f(z)dz+\cdots+ \int_{\gamma_k}f(z)dz\\ &\le Ml(\gamma_1)+Ml(\gamma_2)+\cdots+Ml(\gamma_k)\\ &=Ml(\Gamma) \end{align} }[/math]

이므로 원하는 결론을 얻는다.

또는 [math]\displaystyle{ \left|\int_a^b f(t)dt\right| \le \int_a^b |f(t)|dt }[/math]를 먼저 증명한 뒤 추정 보조정리가 따름정리가 됨을 보이면 된다.

예시

  • [math]\displaystyle{ C:|z|=3 }[/math]일 때, [math]\displaystyle{ \left|\int_C \frac{dz}{z^2-i}\right|\le \frac{3\pi}{4} }[/math]
Solution
삼각부등식에 의해
[math]\displaystyle{ \left|\frac{1}{z^2-i}\right|\le \frac{1}{|z|^2-1}=\frac{1}{8} }[/math]

이므로 추정 보조정리에 의해

[math]\displaystyle{ \left|\int_C\frac{1}{z^2-i} dz\right|\le \frac{1}{8}\cdot 6\pi = \frac{3\pi}{4} }[/math]
이다.