사용자:CrMT/연습장: 두 판 사이의 차이

26번째 줄: 26번째 줄:


== 결합구조 ==
== 결합구조 ==
<math>\mathscr P</math>, <math>\mathscr L</math>(<math>\mathscr P \cap \mathscr L = \emptyset</math>) 와 <math>\mathscr I\subseteq \mathscr P \times \mathscr L</math>가 [[집합]]일 때, <math>\sigma = (\mathscr P, \mathscr L, \mathscr I)</math>을 '''결합구조'''(incidence structure), 또는 '''기하학적 구조'''(geometric structure)라 한다. 만약 <math>\mathscr P</math>와 <math>\mathscr L</math>이 [[유한]]이면, <math>\sigma</math>를 '''유한결합구조'''라 한다. 여기서 <math>\mathscr P</math>는 [[점]]들의 집합이고, <math>\mathscr L</math>은 [[선]]<ref>흔히 생각하는 직선일 필요는 없다. 아래의 [[아핀 평면#예시]] 참조.</ref>들의 집합이다. 점과 선의 [[교집합]]이 [[공집합|공]]이라는 것은, 선이 점으로 이루어진 것으로 보지 않겠다는 것을 말한다.
<math>\mathscr P</math>, <math>\mathscr L</math>(<math>\mathscr P \cap \mathscr L = \emptyset</math>) 와 <math>\mathscr I\subseteq \mathscr P \times \mathscr L</math>가 [[집합]]일 때, <math>\sigma = (\mathscr P, \mathscr L, \mathscr I)</math>을 '''결합구조'''(incidence structure), 또는 '''기하학적 구조'''(geometric structure)라 한다. 만약 <math>\mathscr P</math>와 <math>\mathscr L</math>이 [[유한]]이면, <math>\sigma</math>를 '''유한결합구조'''라 한다. 여기서 <math>\mathscr P</math>는 [[점]]들의 집합이고, <math>\mathscr L</math>은 [[선]]<ref>흔히 생각하는 직선일 필요는 없다. 아래의 [[아핀 평면#예시]] 참조.</ref>들의 집합이다. 점과 선의 [[교집합]]이 [[공집합|공]]이라는 것은, 점과 선을 같은 것으로 보지 않겠다는 말이다.


주어진 점 <math>p, q\in\mathscr P</math>에 대하여, <math>\exists L \in \mathscr L \text{ s.t. } (p,L),(q,L)\in \mathscr I</math>이면 '''<math>p</math>와 <math>q</math>는 jointed'''라 하고, 만약 위를 만족하는 선 <math>L</math>이 단 하나 존재하면 '''<math>L</math>은 <math>p</math>와 <math>q</math>에 의하여 결정된다'''고 한다(선 <math>L</math>을 <math>p</math>와 <math>q</math>의 '''join'''이라 하고 <math>pq:=L</math>로 쓴다.) 비슷하게, given <math>L, M\in \mathscr L</math>, if <math>\exists p \in \mathscr P \text{ s.t. } (p,L),(p,M)\in \mathscr I</math>, we say '''<math>L</math> and <math>M</math> meet''', and we say '''<math>p</math> is decided by <math>L</math> and <math>M</math>''' if there is only one point <math>p</math>(we call it the '''intersection''' <math>p:=L\cap M</math>.) And also denote <math>[p(\in\mathscr P)\in L (\in \mathscr L)] := [(p, L) \in \mathscr I]</math> and omit <math>\mathscr I</math>.  
주어진 점 <math>p, q\in\mathscr P</math>에 대하여, <math>\exists L \in \mathscr L \text{ s.t. } (p,L),(q,L)\in \mathscr I</math>이면 '''<math>p</math>와 <math>q</math>는 jointed'''라 하고, 만약 위를 만족하는 선 <math>L</math>이 단 하나 존재하면 '''<math>L</math>은 <math>p</math>와 <math>q</math>에 의하여 결정된다'''고 한다(선 <math>L</math>을 <math>p</math>와 <math>q</math>의 '''join'''이라 하고 <math>pq:=L</math>로 쓴다.) 비슷하게, given <math>L, M\in \mathscr L</math>, if <math>\exists p \in \mathscr P \text{ s.t. } (p,L),(p,M)\in \mathscr I</math>, we say '''<math>L</math> and <math>M</math> meet''', and we say '''<math>p</math> is decided by <math>L</math> and <math>M</math>''' if there is only one point <math>p</math>(we call it the '''intersection''' <math>p:=L\cap M</math>.) And also denote <math>[p(\in\mathscr P)\in L (\in \mathscr L)] := [(p, L) \in \mathscr I]</math> and omit <math>\mathscr I</math>.


== 평면 ==
== 평면 ==

2015년 8월 10일 (월) 02:57 판

거듭제곱의 합

거듭제곱의 합(power of sum)은 크게 두 가지가 있다: 지수가 변하는 것과 밑이 변하는 것.

지수가 변하는 거듭제곱의 합

가장 기본적인 형태는

[math]\displaystyle{ \sum_{i=0}^n x^i = \frac{x^{n+1}-1}{x-1} }[/math]

이다. 이를 미분하여 [math]\displaystyle{ x }[/math]를 곱하면 다음을 얻는다.

[math]\displaystyle{ \sum_{i=0}^n ix^i = \frac{x-(n+1)x^{n+1} + nx^{n+2}}{(x-1)^2}. }[/math]

비슷한 방법으로 어떤 양의 정수 [math]\displaystyle{ e_i \quad (i=0,\cdots,m) }[/math]에 대하여

[math]\displaystyle{ \sum_{i=0}^n k^{e_0}(k-1)^{e_1}\cdots (k-m)^{e_m}x^k }[/math]

를 구할 수 있다. 식이 너무 길어질 것 같으니 생략한다.

밑이 변하는 거듭제곱의 합

가장 기본적인 형태는

[math]\displaystyle{ \sum_{i=0}^n i^p }[/math]

이다. 이는 위 경우에 비하여 계산하기가 어렵다. 고교 과정에서는 [math]\displaystyle{ p=1, 2, 3 }[/math]의 경우를 배우는데, 이항정리를 이용하여 귀납적으로 이끌어낸다. [math]\displaystyle{ \sum_{i=0}^n i^p }[/math]를 만들기 위하여 [math]\displaystyle{ (x+1)^{p+1} - x^{p+1} = \sum_{j=0}^{p} \binom{p+1}{j}x^j }[/math]를 이용한다. 이 식을 [math]\displaystyle{ i=0 }[/math]에서부터 [math]\displaystyle{ i=n }[/math]까지 더하면

[math]\displaystyle{ \sum_{i=0}^n \left((i+1)^{p+1} - i^{p+1}\right)=(n+1)^{p+1} = \sum_{i=0}^n \sum_{j=0}^{p} \binom{p+1}{j}i^j = \sum_{j=0}^{p} \binom{p+1}{j} \sum_{i=0}^n i^j }[/math]

이다. 이를

[math]\displaystyle{ (n+1)^{p+1}-\sum_{j=0}^{p-1}\binom{p+1}{j}\sum_{i=0}^n i^j=\binom{p+1}{p}\sum_{i=0}^n i^p }[/math]
[math]\displaystyle{ \sum_{i=0}^n i^p = \frac{(n+1)^{p+1}}{p+1} - \frac 1 {p+1} \sum_{j=0}^{p-1}\binom{p+1}{j}\sum_{i=0}^n i^j }[/math]

로 정리하면 원하는 식을 얻는다.

결합기하학

결합기하학(incidence geometry)은 결합구조를 연구하는 학문이다. 해석기하학과 달리 점, 선, 그리고 그 결합만을 생각한다.

결합구조

[math]\displaystyle{ \mathscr P }[/math], [math]\displaystyle{ \mathscr L }[/math]([math]\displaystyle{ \mathscr P \cap \mathscr L = \emptyset }[/math]) 와 [math]\displaystyle{ \mathscr I\subseteq \mathscr P \times \mathscr L }[/math]집합일 때, [math]\displaystyle{ \sigma = (\mathscr P, \mathscr L, \mathscr I) }[/math]결합구조(incidence structure), 또는 기하학적 구조(geometric structure)라 한다. 만약 [math]\displaystyle{ \mathscr P }[/math][math]\displaystyle{ \mathscr L }[/math]유한이면, [math]\displaystyle{ \sigma }[/math]유한결합구조라 한다. 여기서 [math]\displaystyle{ \mathscr P }[/math]들의 집합이고, [math]\displaystyle{ \mathscr L }[/math][1]들의 집합이다. 점과 선의 교집합이라는 것은, 점과 선을 같은 것으로 보지 않겠다는 말이다.

주어진 점 [math]\displaystyle{ p, q\in\mathscr P }[/math]에 대하여, [math]\displaystyle{ \exists L \in \mathscr L \text{ s.t. } (p,L),(q,L)\in \mathscr I }[/math]이면 [math]\displaystyle{ p }[/math][math]\displaystyle{ q }[/math]는 jointed라 하고, 만약 위를 만족하는 선 [math]\displaystyle{ L }[/math]이 단 하나 존재하면 [math]\displaystyle{ L }[/math][math]\displaystyle{ p }[/math][math]\displaystyle{ q }[/math]에 의하여 결정된다고 한다(선 [math]\displaystyle{ L }[/math][math]\displaystyle{ p }[/math][math]\displaystyle{ q }[/math]join이라 하고 [math]\displaystyle{ pq:=L }[/math]로 쓴다.) 비슷하게, given [math]\displaystyle{ L, M\in \mathscr L }[/math], if [math]\displaystyle{ \exists p \in \mathscr P \text{ s.t. } (p,L),(p,M)\in \mathscr I }[/math], we say [math]\displaystyle{ L }[/math] and [math]\displaystyle{ M }[/math] meet, and we say [math]\displaystyle{ p }[/math] is decided by [math]\displaystyle{ L }[/math] and [math]\displaystyle{ M }[/math] if there is only one point [math]\displaystyle{ p }[/math](we call it the intersection [math]\displaystyle{ p:=L\cap M }[/math].) And also denote [math]\displaystyle{ [p(\in\mathscr P)\in L (\in \mathscr L)] := [(p, L) \in \mathscr I] }[/math] and omit [math]\displaystyle{ \mathscr I }[/math].

평면

We shall call incidence structures [math]\displaystyle{ \pi=(\mathscr P , \mathscr I) }[/math] satisfying following axioms planes:

  • [math]\displaystyle{ \forall p, q \in\mathscr P \exists ! L \in \mathscr L \text{ s.t. }p, q\in L, }[/math]
  • [math]\displaystyle{ \forall L\in\mathscr L \exists p, q\in\mathscr P (p \ne q) \text{ s.t. } p, q \in L. }[/math]

아핀 평면

We call incidence structures satisfying following axioms affine planes:

  • [math]\displaystyle{ \exists L \in \mathscr L, }[/math]
  • [math]\displaystyle{ \forall L \in \mathscr L \exists p, q\in \mathscr P (p \ne q) \text{ s.t. }p,q\in L, }[/math]
  • [math]\displaystyle{ \forall L \in \mathscr L \exists r\in\mathscr P \text{ s.t. }r \notin L, }[/math]
  • [math]\displaystyle{ \forall p,q \in \mathscr P (p\ne q)\exists ! L=pq\in \mathscr L, }[/math]
  • [math]\displaystyle{ \forall L \in \mathscr L \forall p (\notin L) \in \mathscr P \exists ! M \in \mathscr L \text{ s.t. } p \in M \wedge L \| M. }[/math] ([math]\displaystyle{ L \| M }[/math] means [math]\displaystyle{ \not \exists L \cap M }[/math].)

And every affine plane is a plane.

실-아핀 평면

We call incidence structures [math]\displaystyle{ \alpha_\mathbb R }[/math] satisfying following axioms real affine planes:

  • [math]\displaystyle{ \mathscr P \subseteq \mathbb R^2, }[/math]
  • [math]\displaystyle{ L(\in \mathscr L) = \{(x,y)|ax+by+c=0 \wedge a, b, c\in\mathbb R \wedge \neg(a=0\wedge b=0) \}, }[/math]
  • [math]\displaystyle{ (x_0 , y_0) \in \{ (x,y)|ax+by+c = 0\} \Longleftrightarrow ax_0 + by_0 + c = 0. }[/math]

And every real affine plane is an affine plane.

사영 평면

뉴턴의 운동 법칙

뉴턴의 운동 법칙(Newton's laws of motion)은 아이작 뉴턴에 의해 정립된 세 가지 물리 법칙이다.

역사

제1 법칙: 관성의 법칙

외력이 없을 때 어떤 물체의 질량중심은 일정한 속도 (또는 운동량)을 가지고 운동한다.

관성의 법칙을 만족하는 기준틀(좌표계)를 관성기준틀(관성좌표계, 관성계)라 부르고, 즉 이는 등속도 운동을 하는 기준틀을 말한다.

제2 법칙: 가속도의 법칙

제3 법칙: 작용-반작용의 법칙

  1. 흔히 생각하는 직선일 필요는 없다. 아래의 아핀 평면#예시 참조.