틀:학술

직교좌표계란 n차원 공간에서의 물체의 위치를 서로 직교하는 n개의 축으로 나타내는 기법을 의미한다.

직교좌표계와 벡터에 대한 사용자:Pectus Solentis의 설명

크기와 방향을 모두 가진 양을 벡터라고 부른다고 했다. 하지만 매번 방향을 언급하기는 불편하며, 기준 방향이 주어져 있다고 해도 '크기와 방향'만으로 벡터를 연산하려면 삼각함수의 여러 법칙들을 사용해야 한다. 그렇다면 벡터를 더 편리하게 언급할 방법이 있을지 한 번 알아보자. 어떤 문제를 탐구할 때 답을 쉽게 알 수 없는 경우엔, 그 문제의 가장 간단한 경우에서 시작해서 점점 복잡한 경우로 넘어오는 것이 도움이 된다.

일직선상에서는 원점에서의 방향(왼쪽, 오른쪽)과 거리만 언급해 주면 되니 이 문제를 고민할 필요가 없어 보인다. 그렇다면 일직선만으로 점의 위치를 전부 표시할 수 없는 공간 중 가장 간단한 공간인 평면을 생각해 보도록 한다. 여기서 필자는 여러분들의 직관에 호소하도록 하겠다. 평면 위에 임의의 직선을 그은 뒤 그 직선을 레일 삼아 장난감 기차가 놓여져 있다고 생각해 보자. 이 기차는 절대로 탈선하지 않는다. 이 기차에 벡터의 일종인 '힘'을 아무 방향에서나 가해 보도록 하자. ('힘'이 무엇인지는 다음 단원에서 제대로 정의할 것이다. 일단은 직관적인 의미로 언급했다) 어느 방향에서 힘을 가하면 기차가 안 움직일까? 레일에서 직각인 방향에서 힘을 가하면 기차가 움직이지 않을 것이다. 그리고 레일에 평행하지 않은 방향에서 힘을 가하면, 그 힘의 레일에서 평행한 방향의 성분만큼의 크기의 힘을 레일에서 평행한 방향으로 가한 것과 똑같이 기차가 움직일 것이다. 이를 생각해 보면, 이 장난감 기차에 가한 임의의 힘은 레일의 방향으로 작용하는 힘과 레일에 수직한 방향으로 작용하는 힘 두 가지로 분해해서 생각해 볼 수 있을 것 같다.

이를 일반화하면, 임의의 벡터는 일정한 방향으로 향하는 성분과 그 방향에 수직한 방향으로 작용하는 성분으로 분해해서 생각하면 좋다는 생각이 든다. 물론 이는 벡터를 분해하는 방법 중 극히 일부일 뿐이지만, 위의 장난감 기차의 예시를 볼 때, 한 벡터를 임의의 방향과, 그에 수직한 방향으로 분해하는 것이 일반적인 경우에선 가장 직관적임을 알 수 있을 것이다. 그렇다면, 서로 직교하는 두 좌표축을 설정하면 한 평면 안의 모든 점을 손쉽게 표기할 수 있다는 말이 된다. 이 두 좌표축은 첫번째 좌표축의 +방향과 두 번째 좌표축의 +방향이 반시계 방향을 이루도록 배치하는 것이 관례이다.

3차원 공간에서는, 이저느이 두 좌표축 모두에 직교하는 3번째 좌표축을 원점[1]을 관통하도록 설정해 주면 된다. 이 3번째 좌표축은, 첫번째 좌표축의 +방향과 두번째 좌표축의 +방향을 순서대로 지나도록 오른손을 말아쥐었을 때 엄지가 향하는 방향으로 잡는 것이 관례이다.

이렇게 우리는 공간을 '좌표계'로 나타내는 방법을 배웠다. 그리고 이 체계에서는 벡터를 아주 편리하게 나타낼 수 있다. 임의의 점으로 향하는 벡터를 각각의 좌표축에 평행하게 진행하는 성분들로 분해한 뒤, 그 각각의 성분들이 원점에서 어떠한 방향으로 떨어져 있는지만 언급하면 되는 것이다. 1차원 공간상의 벡터는 스칼라와 동치임을 앞에서 언급했으므로 우리는 벡터를 스칼라들의 나열로 나타낼 수 있게 된 것이다.

벡터를 이렇게 표기하고 나면 벡터간의 덧뺄셈 A±B는, A(a1, a2, a3), B(b1, b2, b3)이라고 했을 때 A±B(a1 ± b1, a2 ± b2, a3 ± b3) 이라는 스칼라의 덧뺄셈으로 환원될 수 있다는 것은, 여러분들이 직접 생각해 보면 알 수 있을 것이다.

각주

  1. 좌표축이 여럿이 존재할 경우에는 이들을 모두 한 점에서 만나게 하고 그들의 교점을 원점으로 잡는 것이 합리적임은 굳이 설명할 필요가 없을 것이다.