정규부분군

휴면유동닉 (토론 | 기여)님의 2015년 6월 8일 (월) 14:47 판

틀:학술 틀:토막글

정의

G의 부분군을 N이라고 하자. 임의의 [math]\displaystyle{ g\in G }[/math]에 대해

[math]\displaystyle{ gN=Ng }[/math]

NG정규부분군(Normal subgroup)이라 한다. 이때 [math]\displaystyle{ gN,Ng }[/math]는 각각 N의 좌잉여류(left coset)와 우잉여류(right coset)를 나타낸다. 이 정의는 절대 임의의 [math]\displaystyle{ n\in N }[/math]에 대해서 [math]\displaystyle{ gn=ng }[/math]임을 뜻하는 것이 아니다!

다음 명제는 서로 동치이다.

  • NG의 정규부분군이다.
  • [math]\displaystyle{ g^{-1}Na=\{g^{-1}ng\vert n\in N\} }[/math]으로 정의하면, 임의의 [math]\displaystyle{ g\in G }[/math]에 대해 [math]\displaystyle{ a^{-1}Na\subseteq N }[/math]이다.
  • [math]\displaystyle{ gNg^{-1}=\{gng^{-1}\vert n\in N\} }[/math]으로 정의하면, 임의의 [math]\displaystyle{ g\in G }[/math]에 대해 [math]\displaystyle{ aNa^{-1}\subseteq N }[/math]이다.
  • 임의의 [math]\displaystyle{ g\in G }[/math]에 대해 [math]\displaystyle{ g^{-1}Ng= N }[/math]이다.
  • 임의의 [math]\displaystyle{ g\in G }[/math]에 대해 [math]\displaystyle{ gNg^{-1}= N }[/math]이다.

성질

  • NKG의 정규부분군이면, [math]\displaystyle{ N\cap K }[/math]G의 정규부분군이다.
  • NKG의 정규부분군이면, 집합 [math]\displaystyle{ NK=\{nk\vert n\in N, k\in K\} }[/math]G의 정규부분군이다.
  • N지표 2인 G의 부분군이면, NG의 정규부분군이다.
  • 함수 [math]\displaystyle{ f:G\to H }[/math]가 군 준동형사상이라고 하자. 그러면 f [math]\displaystyle{ \ker f }[/math]G의 정규부분군이다.

같이 보기