사용자:CrMT/연습장: 두 판 사이의 차이

15번째 줄: 15번째 줄:
a '''incidence structure''', or a '''geometric structure'''. If <math>\mathscr P</math> and <math>\mathscr L</math> are finite sets, we call <math>\sigma</math> a '''finite incidence structure'''.
a '''incidence structure''', or a '''geometric structure'''. If <math>\mathscr P</math> and <math>\mathscr L</math> are finite sets, we call <math>\sigma</math> a '''finite incidence structure'''.


For given <math>p, q\in\mathscr P</math>, if <math>\exists L \in \mathscr L \text{ s.t. } (p,L),(q,L)\in \mathscr I</math>, we say '''<math>p</math> and <math>q</math> are jointed''', and we say '''<math>L</math> is decided by <math>p</math> and <math>q</math>''' if there is only one line <math>L</math>(we call it the '''join''' <math>pq:=L</math>.) Similarly, given <math>L, M\in \mathscr L</math>, if <math>\exists p \in \mathscr P \text{ s.t. } (p,L),(p,M)\in \mathscr I</math>, we say '''<math>L</math> and <math>M</math> meet''', and we say '''<math>p</math> is decided by <math>L</math> and <math>M</math>''' if there is only one point <math>p</math>(we call it the '''intersection''' <math>p:=L\cap M</math>.)
For given <math>p, q\in\mathscr P</math>, if <math>\exists L \in \mathscr L \text{ s.t. } (p,L),(q,L)\in \mathscr I</math>, we say '''<math>p</math> and <math>q</math> are jointed''', and we say '''<math>L</math> is decided by <math>p</math> and <math>q</math>''' if there is only one line <math>L</math>(we call it the '''join''' <math>pq:=L</math>.) Similarly, given <math>L, M\in \mathscr L</math>, if <math>\exists p \in \mathscr P \text{ s.t. } (p,L),(p,M)\in \mathscr I</math>, we say '''<math>L</math> and <math>M</math> meet''', and we say '''<math>p</math> is decided by <math>L</math> and <math>M</math>''' if there is only one point <math>p</math>(we call it the '''intersection''' <math>p:=L\cap M</math>.) And also denote <math>[p(\in\mathscr P)\in L (\in \mathscr L)] := [(p, L) \in \mathscr I]</math> and omit <math>\mathscr I</math>.
 
== 평면 ==
We shall call incidence structures <math>\pi=(\mathscr P , \mathscr I)</math> satisfying following axioms '''planes''':
 
* <math>\forall p, q \in\mathscr P \exists ! L \in \mathscr L \text{ s.t. }p, q\in L,</math>
* <math>\forall L\in\mathscr L \exists p, q\in\mathscr P (p \ne q) \text{ s.t. } p, q \in L.</math>


= 뉴턴의 운동 법칙 =
= 뉴턴의 운동 법칙 =

2015년 7월 12일 (일) 22:34 판


인터위키 테스트

oeis:A000108

사영기하학

사영기하학(射影幾何學, projective geometry)은 사영변환에 대해 보존되는 성질을 연구하는 매우 추상적인 기하학이다.

결합기하학

결합기하학(incidence geometry)은 결합구조를 연구하는 학문이다. 해석기하학과 달리 점, 선, 그리고 그 결합만을 생각한다.

결합구조

Let [math]\displaystyle{ \mathscr P }[/math], [math]\displaystyle{ \mathscr L }[/math]([math]\displaystyle{ \mathscr P \cap \mathscr L = \emptyset }[/math]) and [math]\displaystyle{ \mathscr I\subseteq \mathscr P \times \mathscr L }[/math] be sets, we call

[math]\displaystyle{ \sigma = (\mathscr P, \mathscr L, \mathscr I) }[/math]

a incidence structure, or a geometric structure. If [math]\displaystyle{ \mathscr P }[/math] and [math]\displaystyle{ \mathscr L }[/math] are finite sets, we call [math]\displaystyle{ \sigma }[/math] a finite incidence structure.

For given [math]\displaystyle{ p, q\in\mathscr P }[/math], if [math]\displaystyle{ \exists L \in \mathscr L \text{ s.t. } (p,L),(q,L)\in \mathscr I }[/math], we say [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] are jointed, and we say [math]\displaystyle{ L }[/math] is decided by [math]\displaystyle{ p }[/math] and [math]\displaystyle{ q }[/math] if there is only one line [math]\displaystyle{ L }[/math](we call it the join [math]\displaystyle{ pq:=L }[/math].) Similarly, given [math]\displaystyle{ L, M\in \mathscr L }[/math], if [math]\displaystyle{ \exists p \in \mathscr P \text{ s.t. } (p,L),(p,M)\in \mathscr I }[/math], we say [math]\displaystyle{ L }[/math] and [math]\displaystyle{ M }[/math] meet, and we say [math]\displaystyle{ p }[/math] is decided by [math]\displaystyle{ L }[/math] and [math]\displaystyle{ M }[/math] if there is only one point [math]\displaystyle{ p }[/math](we call it the intersection [math]\displaystyle{ p:=L\cap M }[/math].) And also denote [math]\displaystyle{ [p(\in\mathscr P)\in L (\in \mathscr L)] := [(p, L) \in \mathscr I] }[/math] and omit [math]\displaystyle{ \mathscr I }[/math].

평면

We shall call incidence structures [math]\displaystyle{ \pi=(\mathscr P , \mathscr I) }[/math] satisfying following axioms planes:

  • [math]\displaystyle{ \forall p, q \in\mathscr P \exists ! L \in \mathscr L \text{ s.t. }p, q\in L, }[/math]
  • [math]\displaystyle{ \forall L\in\mathscr L \exists p, q\in\mathscr P (p \ne q) \text{ s.t. } p, q \in L. }[/math]

뉴턴의 운동 법칙

뉴턴의 운동 법칙(Newton's laws of motion)은 아이작 뉴턴에 의해 정립된 세 가지 물리 법칙이다.

역사

제1 법칙: 관성의 법칙

외력이 없을 때 어떤 물체의 질량중심은 일정한 속도 (또는 운동량)을 가지고 운동한다.

관성의 법칙을 만족하는 기준틀(좌표계)를 관성기준틀(관성좌표계, 관성계)라 부르고, 즉 이는 등속도 운동을 하는 기준틀을 말한다.

제2 법칙: 가속도의 법칙

제3 법칙: 작용-반작용의 법칙