라플라스 방정식: 두 판 사이의 차이

10번째 줄: 10번째 줄:
: <math>\frac{\partial^2 \psi}{\partial x^2}+\frac{\partial^2 \psi}{\partial y^2}+\frac{\partial^2 \psi}{\partial z^2}=0</math>
: <math>\frac{\partial^2 \psi}{\partial x^2}+\frac{\partial^2 \psi}{\partial y^2}+\frac{\partial^2 \psi}{\partial z^2}=0</math>
* 원통좌표계: <math>\psi=\psi(r,\phi,z)</math>
* 원통좌표계: <math>\psi=\psi(r,\phi,z)</math>
: <math>\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial \psi}{\partial r}\right)+\frac{1}{r^2}\frac{\partial^2\psi}{\partial \phi^2}+\frac{\partial^2\phi}{\partial z^2}=0</math>
: <math>\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial \psi}{\partial r}\right)+\frac{1}{r^2}\frac{\partial^2\psi}{\partial \phi^2}+\frac{\partial^2\psi}{\partial z^2}=0</math>
* 구면좌표계: <math>\psi=\psi(r,\theta,\phi)</math>
* 구면좌표계: <math>\psi=\psi(r,\theta,\phi)</math>
: <math>\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial \psi}{\partial r}\right)+\frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^2\sin^2\theta}\frac{\partial^2 \psi}{\partial \phi^2}=0</math>
: <math>\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial \psi}{\partial r}\right)+\frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^2\sin^2\theta}\frac{\partial^2 \psi}{\partial \phi^2}=0</math>

2015년 5월 17일 (일) 13:23 판

틀:학술 관련 정보

정의

다변수함수 [math]\displaystyle{ \psi=\psi(x_1,x_2,\cdots,x_n) }[/math]에 대한 편미분방정식

[math]\displaystyle{ \triangledown^2 \psi=0 }[/math]

라플라스 방정식(Laplace equation)이라 하고, 라플라스 방정식을 만족하는 함수를 조화함수(Harmonic function)라고 한다.

공식

3차원 좌표계[1]

  • 직각좌표계: [math]\displaystyle{ \psi=\psi(x,y,z) }[/math]
[math]\displaystyle{ \frac{\partial^2 \psi}{\partial x^2}+\frac{\partial^2 \psi}{\partial y^2}+\frac{\partial^2 \psi}{\partial z^2}=0 }[/math]
  • 원통좌표계: [math]\displaystyle{ \psi=\psi(r,\phi,z) }[/math]
[math]\displaystyle{ \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial \psi}{\partial r}\right)+\frac{1}{r^2}\frac{\partial^2\psi}{\partial \phi^2}+\frac{\partial^2\psi}{\partial z^2}=0 }[/math]
  • 구면좌표계: [math]\displaystyle{ \psi=\psi(r,\theta,\phi) }[/math]
[math]\displaystyle{ \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial \psi}{\partial r}\right)+\frac{1}{r^2\sin\theta}\frac{\partial}{\partial \theta}\left(\frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^2\sin^2\theta}\frac{\partial^2 \psi}{\partial \phi^2}=0 }[/math]

2차원 좌표계

  • 직각좌표계: [math]\displaystyle{ \psi=\psi(x,y) }[/math]
[math]\displaystyle{ \frac{\partial^2 \psi}{\partial x^2}+\frac{\partial^2 \psi}{\partial y^2}=0 }[/math]
  • 극좌표계: [math]\displaystyle{ \psi=\psi(r,\theta) }[/math]
[math]\displaystyle{ \frac{\partial^2\psi}{\partial r^2}+\frac{1}{r}\frac{\partial \psi}{\partial r}+\frac{1}{r^2}\frac{\partial^2\psi}{\partial \theta^2}=0 }[/math]

각주

  1. Stephen T. Thornton · Jerry B. Marion (2011). 강석태 옮김. 『일반역학』(제5판). Cengage Learning. pp. 678-681. ISBN 9788962183009