고유값과 고유벡터 편집하기


편집하면 당신의 IP 주소가 공개적으로 기록됩니다. 계정을 만들고 로그인하면 편집 시 사용자 이름만 보이며, 위키 이용에 여러 가지 편의가 주어집니다.

편집을 취소할 수 있습니다. 이 편집을 되돌리려면 아래의 바뀐 내용을 확인한 후 게시해주세요.

최신판 당신의 편집
1번째 줄: 1번째 줄:
 
{{학술}}


== 정의 ==
== 정의 ==
6번째 줄: 6번째 줄:
인 [[스칼라]] λ가 존재하면 <math>\mathbf{v}</math>를 ''L''의 '''고유벡터(Eigenvector)'''라고 하고, λ를 '''고유값(Eigenvalue)'''이라고 한다.
인 [[스칼라]] λ가 존재하면 <math>\mathbf{v}</math>를 ''L''의 '''고유벡터(Eigenvector)'''라고 하고, λ를 '''고유값(Eigenvalue)'''이라고 한다.


선형연산자 ''L''을 나타내는 [[행렬]]을 ''A''라고 하자. 그러면 [[방정식]]은
선형연산자 ''L''을 나타내는 [[행렬 (수학)|행렬]]을 ''A''라고 하자. 그러면 [[방정식]]은
: <math>A\mathbf{v}=\lambda \mathbf{v}</math>
: <math>A\mathbf{v}=\lambda \mathbf{v}</math>
가 된다. 즉,
가 된다. 즉,
15번째 줄: 15번째 줄:


''x''를 체 ''F''의 원소라고 하자. <math>A-xI</math>를 ''A''의 '''특성행렬(characteristic matrix)''', <math>\det(A-xI)</math>를 ''A''의 '''특성다항식(characteristic polynomial)''', 방정식 <math>\det(A-xI)=0</math>을 ''A''의 '''특성방정식(characteristic equation)'''이라고 한다. 특성방정식의 근의 집합은 ''A''의 '''스펙트럼(spectrum)'''이라 한다.
''x''를 체 ''F''의 원소라고 하자. <math>A-xI</math>를 ''A''의 '''특성행렬(characteristic matrix)''', <math>\det(A-xI)</math>를 ''A''의 '''특성다항식(characteristic polynomial)''', 방정식 <math>\det(A-xI)=0</math>을 ''A''의 '''특성방정식(characteristic equation)'''이라고 한다. 특성방정식의 근의 집합은 ''A''의 '''스펙트럼(spectrum)'''이라 한다.
== 고유값의 존재성 ==
선형연산자 <math>T:\mathbb{R}^2\to \mathbb{R}^2</math>가 다음과 같이 정의되었다고 하자.
: <math>T(x,y)=(x-y,x+y)</math>
이때 <math>T</math>의 고윳값이 존재한다고 가정하고 <math>\lambda</math>로 쓰자. 그러면
: <math>(x-y,x+y)=(\lambda x,\lambda y)</math>
이고 따라서 <math>(1-\lambda)x=y,(1-\lambda)y=-x</math>이다. <math>\lambda=1</math>이면 <math>x=y=0</math>이 되므로 불가능하다. 따라서 <math>\lambda\ne 1</math>이다. 그러면
: <math>x= -(1-\lambda)y=-(1-\lambda)^2 x</math>
이므로
: <math>(1+(1-\lambda)^2)x=0</math>
이다. 따라서 <math>T</math>의 고유값은 존재하지 않는다. 그러나 <math>\mathbb{R}</math>을 <math>\mathbb{C}</math>로 바꾸면 <math>T</math>의 고유값은 <math>\lambda_1=1+i</math>, <math>\lambda_2=1-i</math>임을 알 수 있다.
일반적으로 선형연산자 <math>T:\mathbb{C}^n\to \mathbb{C}^n</math>의 고유값은 존재한다.<ref>{{서적 인용|제목=Linear Algebra Done Right|저자=Sheldon Axler|url=http://www.linear.axler.net/Eigenvalues.pdf|출판사=Springer|확인날짜=2016-05-14|판=3rd edition|isbn=0387982582|장=Chapter 5. Eigenvalues, Eigenvectors, and Invariant Subspaces}}</ref><ref>{{서적 인용|제목=A First Course in Linear Algebra|저자=Robert A. Beezer|url=http://linear.ups.edu/download/fcla-3.50-tablet.pdf|확인날짜=2016-05-14|판=Version 3.50|장=Chapter E. Eigenvalues}}</ref> <math>\mathbf{x}</math>를 영이 아닌 임의의 벡터라고 하자. [[집합]] <math>S</math>를
: <math>S=\{\mathbf{x},T\mathbf{x},T^2\mathbf{x},\cdots,T^n\mathbf{x}\}</math>
로 정의하면 <math>S</math>의 원소의 수는 <math>n+1</math>개이므로 <math>S</math>는 [[일차종속]]이다. 따라서
: <math>a_0 \mathbf{x}+a_1 T\mathbf{x}+ a_2 T^2\mathbf{x}+\cdots + a_n T^n \mathbf{x}=\mathbf{0}</math>
를 만족하는 <math>a_0,a_1,\cdots, a_n \in \mathbb{C}</math>가 존재한다. 이때 <math>a_1,a_2,\cdots,a_n</math> 중 하나는 반드시 영이 아닌데, <math>a_1,a_2,\cdots,a_n</math>이 모두 영이라면 <math>a_0 \mathbf{x}=0</math>이 되어 모순이기 때문이다. <math>a_i\ne 0</math>을 만족하는 <math>i\in \{0,1,\cdots, n\}</math> 중 가장 큰 값을 <math>m</math>이라 하자. [[다항식]] <math>p(x)</math>를
: <math>p(x)=a_0 + a_1 x + a_2 x^2 +\cdots + a_m x^m</math>
으로 정의하면, [[대수학의 기본 정리]]에 의해 <math>p(x)=c(x-\lambda_1)(x-\lambda_2)\cdots (x-\lambda_m)</math>인 <math>c,\lambda_1,\lambda_2,\cdots,\lambda_m\in \mathbb{C}</math>가 존재한다. 따라서
: <math>\begin{align}
\mathbf{0}&=a_0 \mathbf{x}+a_1 T\mathbf{x}+ a_2 T^2\mathbf{x}+\cdots + a_n T^n \mathbf{x}\\
&=(a_0 + a_1 T +a_2 T^2 +\cdots + a_n T^n )\mathbf{x}\\
&=c(T-\lambda_1 I)(T-\lambda_2 I)\cdots (T-\lambda_m I)\mathbf{x}
\end{align}</math>
이고, 따라서 <math>T-\lambda_i I</math> 중 하나는 [[일대일 함수]]가 아니다. 따라서 <math>T</math>는 고유값을 가진다.
더욱이, [[대수적으로 닫힌 체]] <math>F</math> 위에서 정의된 임의의 [[자기준동형사상]] <math>T:F^n \to F^n</math>의 고유값은 존재한다.


== 예시 ==
== 예시 ==
122번째 줄: 95번째 줄:


== 대각화 ==
== 대각화 ==
{{참고|대각화}}
{{참조|대각화}}
어떤 <math>n</math>차 정사각행렬 <math>A</math>가 대각화 가능할 필요충분조건은 <math>A</math>의 선형독립인 고유벡터가 <math>n</math>개 존재하는 것이다.
어떤 <math>n</math>차 정사각행렬 <math>A</math>가 대각화 가능할 필요충분조건은 <math>A</math>의 선형독립인 고유벡터가 <math>n</math>개 존재하는 것이다.
{{각주}}


[[분류:선형대수학]]
[[분류:선형대수학]]
리브레 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-동일조건변경허락 3.0 라이선스로 배포됩니다(자세한 내용에 대해서는 리브레 위키:저작권 문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
글이 직접 작성되었거나 호환되는 라이선스인지 확인해주세요. 리그베다 위키, 나무위키, 오리위키, 구스위키, 디시위키 및 CCL 미적용 사이트 등에서 글을 가져오실 때는 본인이 문서의 유일한 기여자여야 하고, 만약 본인이 문서의 유일한 기여자라는 증거가 없다면 그 문서는 불시에 삭제될 수 있습니다.
취소 편집 도움말 (새 창에서 열림)

| () [] [[]] {{}} {{{}}} · <!-- --> · [[분류:]] · [[파일:]] · [[미디어:]] · #넘겨주기 [[]] · {{ㅊ|}} · <onlyinclude></onlyinclude> · <includeonly></includeonly> · <noinclude></noinclude> · <br /> · <ref></ref> · {{각주}} · {|class="wikitable" · |- · rowspan=""| · colspan=""| · |}

이 문서에서 사용한 틀: