사용자:CrMT/연습장/2: 두 판 사이의 차이

잔글편집 요약 없음
잔글편집 요약 없음
 
(같은 사용자의 중간 판 22개는 보이지 않습니다)
1번째 줄: 1번째 줄:
해석학고 위상수학에서, 하이네-보렐 정리(Heine-Borel theorem)는 유클리드 공간에서, 닫힌 유계 집합만이 컴팩트하다는 것을 말한다. 유클리드 공간을 자주 다루는 실해석학에서 기본 개념들의 성질을 증명할 때 자주 사용된다.
=미분 갈루아 이론=


== 진술 ==
유클리드 공간의 부분집합 K에 대하여, 다음이 성립한다:
: K가 닫혀 있고 유계일 때에만 컴팩트하다.


== 증명 ==
 
 
<!--
=람다 계산=
{{학술}}
[[분류:람다 계산]]
{{넘겨주기 있음|람다 대수|람다 연산|람다 계산법|받침=예}}
 
'''람다 계산'''(람다 대수, 람다 연산, 람다 계산법; {{llang|1=en|2=lambda calculus}})은 수리논리학과 이론 컴퓨터과학에서 사용하는 형식 체계(formal system)로, 함수의 정의, 적용, 재귀 등을 치환, 바인딩(binding) 등을 이용하여 추상화한다. [[알론조 처치]]가 1930년대 처음 발표하였다.
 
== 역사 ==
[[라이프니츠]]는 다음과 같은 생각을 가지고 있었다.
* 모든 문제들이 서술될 수 있는 '보편적인(universal) 언어'를 만들어라.
* 위의 언어로 서술된 모든 문제를 해결할 수 있는 방법을 찾아라.
첫 번째 것은, 만약 수학적인 문제만으로 제한한다면, [[러셀]]과 [[프레게]] 등에 의한 '집합론'의 공리적 서술로 인하여 꽤 만족스러운 결과를 얻었다고 할 수 있다. 하지만 두 번째 것은, 당연히 안 될 것 같지만, 그 증명이 명확하지 않았다. (이는 [[힐베르트]]에 의하여 ''Entscheidungsproblem''로 불리게 된다. 직역하면 ''결정 문제''이다.) 이것은 1930년대에 [[알론조 처치]]와 [[앨런 튜링]]에 의하여 각각 독립적으로 해결되는데, 그 답은 [[처치-튜링 명제]]를 가정할 때<ref>Church-Turing 명제는 다음을 말한다: 알고리듬으로 계산 가능함과 튜링 기계로의 계산 가능성은 동치이다. 이와 동치 명제로, 알고리듬으로 계산 가능함과 lambda calculus로 표현 가능함은 동치이다.)</ref> '''No'''이다. 튜링은 후에 이 두 방법으로의 ''계산 가능성'', 즉 계산 가능한 함수들의 모임이 서로 같음을 보였다.
람다 계산이 고안된 이후로, 람다 연산에 기반한 ''함수 프로그래밍 언어''(functional programming language)가 만들어졌다. ''Reduction machine''은 이런 functional language의 실행을 위하여 고안되었다.
 
== 이해 ==
Lambda calculus는 함수의 계산을 조금 더 간편하게 나타내는 표기이다. 간단히 말하면, 대수학에서 잊을 만하면 한 번씩 나오는 'evaluation'과 비슷한 개념이라고 할 수 있다. 예를 들어, <math>x</math>에 대한 식 <math>x^2 - \sin x</math>가 있다고 하자. 이는 다음과 같은 함수를 나타내기도 한다:
:<math>x \mapsto x^2 - \sin x.</math>
이 함수를 lambda calculus에서는
:<math>\lambda x. x^2 - \sin x</math>
로 나타낸다.<ref><math>\lambda x[x \mapsto x^2 - \sin x]</math>로 나타내기도 한다.</ref> 그리고 이 함수의 <math>x=a</math>에서의 함숫값을
:<math>(\lambda x. x^2 - \sin x)a</math>
로 나타낸다. 예를 들어 <math>(\lambda x.x^2 - \sin x)\pi = \pi^2 - \sin \pi = \pi^2</math>이다. 이 λ-연산자는
-->

2016년 9월 11일 (일) 00:08 기준 최신판

미분 갈루아 이론[편집 | 원본 편집]