라디안 편집하기


편집하면 당신의 IP 주소가 공개적으로 기록됩니다. 계정을 만들고 로그인하면 편집 시 사용자 이름만 보이며, 위키 이용에 여러 가지 편의가 주어집니다.

편집을 취소할 수 있습니다. 이 편집을 되돌리려면 아래의 바뀐 내용을 확인한 후 게시해주세요.

최신판 당신의 편집
1번째 줄: 1번째 줄:
{{학술}}
{{작성중}}
== 정의 ==
[[파일:Circle radians.gif|섬네일|300px]]
[[파일:Circle radians.gif|섬네일|300px]]
'''라디안(radian)'''은 각도 단위 중 하나로, [[부채꼴]]의 반지름과 호의 길이가 같을 때 중심각의 크기를 '''1라디안'''이라고 하고, <math>1\operatorname{rad}</math>로 쓴다. 보통 <math>\operatorname{rad}</math>는 생략한다. 예를 들어, <math>\sin (1\operatorname{rad})</math>은 <math>\sin 1</math>로 간단하게 표기한다.
'''라디안(radian)'''은 각도 단위 중 하나로, [[부채꼴]]의 반지름과 호의 길이가 같을 때 중심각의 크기를 '''1라디안'''이라고 하고, <math>1\operatorname{rad}</math>로 쓴다. 보통 <math>\operatorname{rad}</math>는 생략한다. 예를 들어, <math>\sin (1\operatorname{rad})</math>은 <math>\sin 1</math>로 간단하게 표기한다.
8번째 줄: 11번째 줄:
호도, 즉 부채꼴의 반지름의 길이와 호의 길이가 같을 때 그 부채꼴의 중심각의 각도라는 개념 자체는 [[1917년]] 영국의 수학자였던 로저 코츠(Roger Cotes, [[1682년]] [[7월 10일]]~[[1716년]] [[6월 5일]])에 의해 이미 사용되고 있었다. 다만 어디까지나 개념만 언급한 것이지, 라디안이라는 이름까진 언급하진 않고 있다.<ref>http://www-groups.dcs.st-and.ac.uk/~history/Printonly/Cotes.html</ref>
호도, 즉 부채꼴의 반지름의 길이와 호의 길이가 같을 때 그 부채꼴의 중심각의 각도라는 개념 자체는 [[1917년]] 영국의 수학자였던 로저 코츠(Roger Cotes, [[1682년]] [[7월 10일]]~[[1716년]] [[6월 5일]])에 의해 이미 사용되고 있었다. 다만 어디까지나 개념만 언급한 것이지, 라디안이라는 이름까진 언급하진 않고 있다.<ref>http://www-groups.dcs.st-and.ac.uk/~history/Printonly/Cotes.html</ref>


현재까지 남겨진 기록 중 라디안이라는 이름이 처음으로 등장하기 시작한 것은 [[1873년]] [[6월 5일]] [[위키백과:퀸스 대학교 벨파스트|퀸스 대학교 벨파스트]]의 물리학자였던 제임스 톰슨(James Thomson)이 낸 시험 문제에서의 등장이 처음이라고 한다. [[카더라 통신]]에 의하면 원래 제임스 톰슨이 라디안이라는 표현을 쓴 것은 그보다 훨씬 전인 [[1871년]]부터였지만.
현재까지 남겨진 기록 중 라디안이라는 이름이 처음으로 등장하기 시작한 것은 [[1873년]] [[6월 5일]] [[위키백과:퀸스 대학교 벨파스트|퀸스 대학교 벨파스트]]의 물리학자였던 제임스 톰슨(James Thomson)이 낸 시험 문제에서의 등장이 처음이라고 한다. [[카더라 통신]]에 의하면 원래 제임스 톰슨이 라디안이라는 표현을 쓴 것은 그보다 훨씬 전인 [[1871년]]부터였지만.  


[[위키백과:세인트앤드루스 대학교|세인트앤드루스 대학교]]의 교수였던 [[토머스 뮤어]]는 [[1869년]] 내내  '이 부채꼴의 반지름의 길이와 호의 길이가 같을 때 그 부채꼴의 중심각의 각도'의 이름을 라드(rad), 라디알(radial), 라디안(radian) 중에서 뭘로 정할지 고민했었다고 한다.
[[위키백과:세인트앤드루스 대학교|세인트앤드루스 대학교]]의 교수였던 [[토머스 뮤어]]는 [[1869년]] 내내  '이 부채꼴의 반지름의 길이와 호의 길이가 같을 때 그 부채꼴의 중심각의 각도'의 이름을 라드(rad), 라디알(radial), 라디안(radian) 중에서 뭘로 정할지 고민했었다고 한다.


이후 6년이라는 긴 시간이 지난 [[1874년]]이 되어서야 토머스 뮤어는 이 특수한 각의 명칭을 제임스 톰슨과의 상의 끝에 라디안으로 채택하게 된다.<ref>카조리 플로리안, [[1929년]], History of Mathematical Notations 2. pp.147–148, {{ISBN|0-486-67766-4}}.</ref>
이후 6년이라는 긴 시간이 지난 [[1874년]]이 되어서야 토머스 뮤어는 이 특수한 각의 명칭을 제임스 톰슨과의 상의 끝에 라디안으로 채택하게 된다.<ref>카조리 플로리안, [[1929년]], History of Mathematical Notations 2. pp.147–148, ISBN 0-486-67766-4.</ref>


== 60분법과의 관계 ==
== 60분법과의 관계 ==
19번째 줄: 22번째 줄:
첫번째로, [[원주율]]에 대해서 명심할 사실이 있는데 '''π×(원의 지름)=(원의 둘레)라는 사실이다.''' 양변에 똑같이 2를 나눠보면 π×(원의 지름)/2=(원의 둘레)/2가 되므로 π×(원의 반지름)=(반원의 호의 길이)가 된다.
첫번째로, [[원주율]]에 대해서 명심할 사실이 있는데 '''π×(원의 지름)=(원의 둘레)라는 사실이다.''' 양변에 똑같이 2를 나눠보면 π×(원의 지름)/2=(원의 둘레)/2가 되므로 π×(원의 반지름)=(반원의 호의 길이)가 된다.


두번째로, '''[[부채꼴]]에서 중심각의 크기는 그 부채꼴의 호의 길이에 비례한다는 사실'''이다.
두번째로, '''[[부채꼴]]에서 중심각의 크기는 그 부채꼴의 호의 길이에 비례한다는 사실'''이다.  


세번째로, '''중심각이 1rad인 부채꼴의 호의 길이는 반지름과 같다.'''이다.
세번째로, '''중심각이 1rad인 부채꼴의 호의 길이는 반지름과 같다.'''이다.


따라서<br />
따라서<br>
π×(원의 반지름):π×1rad=(반원의 호의 길이):(반원의 중심각의 크기)<br />
π×(원의 반지름):π×1rad=(반원의 호의 길이):(반원의 중심각의 크기)<br>
이렇게 되는데 상술했듯 π×(원의 반지름)=(반원의 호의 길이)이므로
이렇게 되는데 상술했듯 π×(원의 반지름)=(반원의 호의 길이)이므로
<br />
<br>
(같은 거):π×1rad=(같은 거):(반원의 중심각의 크기)<br />
(같은 거):π×1rad=(같은 거):(반원의 중심각의 크기)<br>
가 된다. 서로 같은 것에 대한 비례가 같다는 게 무슨 뜻이겠어? 당연히 그것들도 같다는 뜻이다.
가 된다. 서로 같은 것에 대한 비례가 같다는 게 무슨 뜻이겠어? 당연히 그것들도 같다는 뜻이다.


결국<br />
결국<br>
π×1rad=(반원의 중심각의 크기)<br />
π×1rad=(반원의 중심각의 크기)<br>
가 되므로<br />
가 되므로<br>


'''πrad=180°'''이다.
'''πrad=180°'''이다.
86번째 줄: 89번째 줄:


== 호의 길이와 넓이 ==
== 호의 길이와 넓이 ==
{{참고|부채꼴}}
{{참조|부채꼴}}
반지름이 <math>r</math>, 중심각이 <math>\theta</math>인 부채꼴의 호의 길이를 <math>l</math>, 부채꼴의 넓이를 <math>S</math>라 하면
반지름이 <math>r</math>, 중심각이 <math>\theta</math>인 부채꼴의 호의 길이를 <math>l</math>, 부채꼴의 넓이를 <math>S</math>라 하면
: <math>l=r\theta</math>
: <math>l=r\theta</math>
: <math>S=\frac{1}{2}r^2\theta = \frac{1}{2}rl</math>
: <math>S=\frac{1}{2}r^2\theta = \frac{1}{2}rl</math>
이다.
이다.
{{글 숨김 시작|제목=Proof}}중심각의 크기에 정비례하기 때문에  
{{글 숨김|제목=Proof|1=중심각의 크기에 정비례하기 때문에  
: <math>2\pi r : l = 2\pi : \theta</math>
: <math>2\pi r : l = 2\pi : \theta</math>
이고, 따라서 호의 길이는
이고, 따라서 호의 길이는
100번째 줄: 103번째 줄:
: <math>S=\frac{\pi r^2\theta}{2\pi}=\frac{1}{2}r^2\theta=\frac{1}{2}rl</math>
: <math>S=\frac{\pi r^2\theta}{2\pi}=\frac{1}{2}r^2\theta=\frac{1}{2}rl</math>
이다.
이다.
{{글 숨김 끝}}
}}
{{글 숨김 시작|제목=말로 풀이}}
{{글 숨김|제목=말로 풀이|1=
우선 부채꼴에서 호의 길이는 중심각의 크기에 비례하기 때문에<br />
우선 부채꼴에서 호의 길이는 중심각의 크기에 비례하기 때문에<br>
(원의 지름):(부채꼴의 호의 길이)=(원의 중심각의 크기(?)<ref>360° 말하는 거지 뭐겠어?</ref>:(부채꼴의 중심각의 크기)이다.
(원의 지름):(부채꼴의 호의 길이)=(원의 중심각의 크기(?)<ref>360° 말하는 거지 뭐겠어?</ref>:(부채꼴의 중심각의 크기)이다.


이때 이 비를 [[비례식]] 문서에도 나오지만 '''분수 형태로 바꿔줄 수 있다.'''<br />
이때 이 비를 [[비례식]] 문서에도 나오지만 '''분수 형태로 바꿔줄 수 있다.'''<br>
<math>\frac{(원의 지름)}{(부채꼴의 호의 길이)} = \frac{(원의 중심각의 크기)}{(부채꼴의 중심각의 크기)}</math><br />
<math>\frac{(원의 지름)}{(부채꼴의 호의 길이)} = \frac{(원의 중심각의 크기)}{(부채꼴의 중심각의 크기)}</math><br>
이렇게.
이렇게.


이때 양변에 <math>\frac{(부채꼴의 호의 길이)×(부채꼴의 중심각의 크기)}{(원의 중심각의 크기)}</math>를 곱해주면 양변이 약분이 되면서<br />
이때 양변에 <math>\frac{(부채꼴의 호의 길이)×(부채꼴의 중심각의 크기)}{(원의 중심각의 크기)}</math>를 곱해주면 양변이 약분이 되면서<br>
(부채꼴의 호의 길이)=<math>\frac{(원의 지름)×(부채꼴의 중심각의 크기)}{(원의 중심각의 크기)}</math>가 된다.
(부채꼴의 호의 길이)=<math>\frac{(원의 지름)×(부채꼴의 중심각의 크기)}{(원의 중심각의 크기)}</math>가 된다.


115번째 줄: 118번째 줄:


Q.E.D.
Q.E.D.
{{글 숨김 끝}}
}}
여기서 <math>l=r\theta</math>에 등장하는 <math>\theta</math>에는 <math>\operatorname{rad}</math>이 붙어있지 않다. <math>\operatorname{rad}</math>가 붙어 있다고 가정하고, <math>r,l</math>에 길이 단위인 미터를 붙이면
여기서 <math>l=r\theta</math>에 등장하는 <math>\theta</math>에는 <math>\operatorname{rad}</math>이 붙어있지 않다. <math>\operatorname{rad}</math>가 붙어 있다고 가정하고, <math>r,l</math>에 길이 단위인 미터를 붙이면
: <math>l\;(\mathrm{m})=r\theta\;(\mathrm{m\times rad})</math>
: <math>l\;(\mathrm{m})=r\theta\;(\mathrm{m\times rad})</math>
132번째 줄: 135번째 줄:
: <math>\sin x = x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots</math>
: <math>\sin x = x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\cdots</math>


: <math>\sin x = \frac{\pi}{180}x -\left(\frac{\pi}{180}\right)^3\frac{x^3}{3!}+\left(\frac{\pi}{180}\right)^5\frac{x^5}{5!}-\left(\frac{\pi}{180}\right)^7\frac{x^7}{7!}+\cdots</math>
: <math>\sin x = </math>
 
== 물리학과 라디안 ==
라디안은 무차원인 [[SI 유도 단위]]이다. 라디안은 교수자와 학습자 모두에게 혼동을 일으킨다.<ref name="aapt">{{저널 인용|저자=The AAPT Metric Education and SI Practices Committee (Gordon J. Aubrecht, Anthony P. French, Mario Iona, and Daniel W. Welch|연도=1993|월=2|제목=The Radian - That Troublesome Unit|저널=The Physics Teacher|권=31}}</ref>{{rp|84}} 예를 들어, 접선 속력 공식을 살펴보자.
: <math>v_t = r\frac{d\theta}{dt}=r\omega</math>
이때 <math>r</math>의 단위를 <math>\mathrm{m}</math>, <math>\omega</math>의 단위를 <math>\operatorname{rad}/\mathrm{s}</math>로 두면 <math>v_t</math>의 단위는 <math>\mathrm{m}\cdot \operatorname{rad}/\mathrm{s}</math>가 되는데, 이는 속력의 단위가 <math>\mathrm{m/s}</math>인 것과 일치하지 않는다.<ref name="aapt" />{{rp|86}}
 
== 포장함수 ==
== 포장함수 ==
{{참고|삼각함수}}
{{참조|삼각함수}}
원 <math>x^2+y^2= r^2\;(r>0)</math> 위의 임의의 한 점을 <math>\mathrm{P}(x,y)</math>라 하고, <math>\mathrm{A}=(r,0)</math>이며, <math>\theta=\angle \mathrm{POA}</math>라 하면 삼각함수는 다음과 같이 정의된다.
원 <math>x^2+y^2= r^2\;(r>0)</math> 위의 임의의 한 점을 <math>\mathrm{P}(x,y)</math>라 하고, <math>\mathrm{A}=(r,0)</math>이며, <math>\theta=\angle \mathrm{POA}</math>라 하면 삼각함수는 다음과 같이 정의된다.
: <math>\sin\theta=\frac{y}{r}</math>
: <math>\sin\theta=\frac{y}{r}</math>
157번째 줄: 154번째 줄:
== 같이 보기 ==
== 같이 보기 ==
* [[삼각함수]]
* [[삼각함수]]
== 외부 링크 ==
* <small>'''(영어)'''</small> [https://www.mathsisfun.com/geometry/radians.html Radians]


{{각주}}
{{각주}}
[[분류:단위]]
[[분류:기하학]]
리브레 위키에서의 모든 기여는 크리에이티브 커먼즈 저작자표시-동일조건변경허락 3.0 라이선스로 배포됩니다(자세한 내용에 대해서는 리브레 위키:저작권 문서를 읽어주세요). 만약 여기에 동의하지 않는다면 문서를 저장하지 말아 주세요.
글이 직접 작성되었거나 호환되는 라이선스인지 확인해주세요. 리그베다 위키, 나무위키, 오리위키, 구스위키, 디시위키 및 CCL 미적용 사이트 등에서 글을 가져오실 때는 본인이 문서의 유일한 기여자여야 하고, 만약 본인이 문서의 유일한 기여자라는 증거가 없다면 그 문서는 불시에 삭제될 수 있습니다.
취소 편집 도움말 (새 창에서 열림)

| () [] [[]] {{}} {{{}}} · <!-- --> · [[분류:]] · [[파일:]] · [[미디어:]] · #넘겨주기 [[]] · {{ㅊ|}} · <onlyinclude></onlyinclude> · <includeonly></includeonly> · <noinclude></noinclude> · <br /> · <ref></ref> · {{각주}} · {|class="wikitable" · |- · rowspan=""| · colspan=""| · |}

이 문서에서 사용한 틀: