T0 공간

위상공간분리공리
콜모고로프 공간 (T0) 프레셰 공간 (T1) 하우스도르프 공간 (T2) 우리손 공간 (T)
정칙공간 (T3) 완비정칙공간 (T) 정규공간 (T4) 완비정규공간 (T5) 완전정규공간 (T6)

위상공간 [math]\displaystyle{ X }[/math]의 서로 다른 임의의 점 [math]\displaystyle{ a,b\in X }[/math]에 대해 한 점을 포함하고 다른 한 점을 포함하지 않는 열린집합이 존재하면 [math]\displaystyle{ X }[/math]T0 공간 또는 콜모고로프 공간(Kolmogorov space)이라고 한다.

1 예시[편집]

  • [math]\displaystyle{ X=\{a,b\} }[/math]이고 [math]\displaystyle{ \mathcal{T}=\{\emptyset,\{a\},X\} }[/math]일 때, [math]\displaystyle{ (X,\mathcal{T}) }[/math]는 T0 공간이지만 T1 공간이 아니다. (시에르핀스키 공간)
  • 임의의 T1 공간은 T0 공간이다.

2 성질[편집]