(이름공간을 뺀) 문서 제목 (page_title) | '라그랑주 정리 (군론)' |
전체 문서 제목 (page_prefixedtitle) | '라그랑주 정리 (군론)' |
이전 콘텐츠 모델 (old_content_model) | 'wikitext' |
새 콘텐츠 모델 (new_content_model) | 'wikitext' |
편집 전 과거 문서의 위키텍스트 (old_wikitext) | '[[군론]](group theory)에서 라그랑주 정리(Lagrange theorem)는 임의의 유한군 G에 대해 그 부분군 H의 [[위수]](位數,order)는 G의 위수를 나눈다는 정리.
이는 [[대칭군]] G 의 부분군 H가 ‘G 의 위수 = H 의 위수 · 잉여류의 갯수’ 라는 라그랑주정리를 조사할수있다
==예==
[[위수]](order) <math>3! \text{인} |G6| \text{또는} Ord(G6) = \left\{ (123), (231),(312), (132),(213),(321) \right\}</math>를 가정하면
[[순환군]]으로부터 부분군 <math>H = \left\{ I,II,III ,IV\right\}</math>는
:<math>I = \left\{ (312), (123),(231) \right\}</math>
:<math>II = \left\{ (132) , (123) \right\}</math>
:<math>III = \left\{ (213), (123) \right\}</math>
:<math>IV = \left\{ (321), (123) \right\}</math> 에서
{| class="wikitable"
|-
! <math>III = \left\{ (213), (123) \right\}</math> !! <math>III \cdot G</math> !! <math>G \cdot III </math> !! 잉여류(coset)
|-
| <math>G= \left\{ (123), (231),(312), (132),(213),(321) \right\} \text{중} \left\{ (123) \right\} </math>||<math>\begin{matrix}123 \cdot 123 =123 \\ 213 \cdot 123 = 213 \end{matrix} </math> || <math>\begin{matrix} 123 \cdot 123= 123 \\ 123 \cdot 213 = 213 \end{matrix} </math> || 좌잉여류(left corset) <math>gH(III \cdot G) = (123),(213)</math> <br /> 우잉여류(right corset) <math>Hg(G \cdot III ) = (123),(213)</math>는 서로 같다.
|-
| <math>G \text{중} (231) </math>|| <math>\begin{matrix}123 \cdot 231 = 231 \\ 213 \cdot 231 = 321 \end{matrix} </math>
|| <math>\begin{matrix}231 \cdot 123 = 231 \\ 231 \cdot 213 = 132 \end{matrix} </math>|| 좌잉여류(left corset) <math>gH(III \cdot G) = (231),(132)</math> <br /> 우잉여류(right corset) <math>Hg(G \cdot III ) = (231),(321)</math>는 서로 같지않다.
|-
| <math>G \text{중} (312) </math> || <math>\begin{matrix}123 \cdot 312 = 312 \\ 213 \cdot 312 = 132 \end{matrix} </math>
|| <math>\begin{matrix}312 \cdot 123 = 312 \\ 312 \cdot 213 = 321 \end{matrix} </math>|| 좌잉여류(left corset) <math>gH(III \cdot G) = (312),(321)</math> <br /> 우잉여류(right corset) <math>Hg(G \cdot III ) = (312),(132)</math>는 서로 같지않다
|-
| <math>G \text{중} (132) </math> ||<math>\begin{matrix}123 \cdot 132 = 132 \\ 213 \cdot 132 = 312 \end{matrix} </math>
|| <math>\begin{matrix}132 \cdot 123 = 132 \\ 132 \cdot 213 = 231 \end{matrix} </math>|| 좌잉여류(left corset) <math>gH(III \cdot G) = (132),(231)</math> <br /> 우잉여류(right corset) <math>Hg(G \cdot III ) = (132),(312)</math>는 서로 같지않다
|-
| <math>G \text{중} (213) </math> || <math>\begin{matrix}123 \cdot 213 = 213 \\ 213 \cdot 213 = 123 \end{matrix} </math>
|| <math>\begin{matrix}213 \cdot 123 = 213 \\ 213 \cdot 213 = 123 \end{matrix} </math>|| 좌잉여류(left corset) <math>gH(III \cdot G) = (213),(123)</math> <br /> 우잉여류(right corset) <math>Hg(G \cdot III ) = (213),(123)</math>는 서로 같다
|-
| <math>G \text{중} (321) </math> || <math>\begin{matrix}123 \cdot 321 = 321 \\ 213 \cdot 321 = 231 \end{matrix} </math>
|| <math>\begin{matrix}321 \cdot 123 = 321 \\ 321 \cdot 213 = 312 \end{matrix} </math>|| 좌잉여류(left corset) <math>gH(III \cdot G) = (321),(312)</math> <br /> 우잉여류(right corset) <math>Hg(G \cdot III ) = (321),(231)</math>는 서로 같지않다
|}
[[좌잉여류]](left corset)는 <math>gH </math>는 <math> \left\{ (123),(213) \right\} \text{ 와 } \left\{ (312),(321) \right\} \text{ 그리고 } \left\{(132),(231)\right\}</math> 이다. 좌잉여류(left corset)는 3개이다.
: <math> |G| = |H| \cdot gH </math>
: <math> 6 = 2 \cdot 3 </math>
따라서 'G 의 위수 = H 의 위수 · 잉여류의 갯수'를 확인할수있다.' |
편집 후 새 문서의 위키텍스트 (new_wikitext) | '#넘겨주기 [[라그랑주의 정리 (군론)]]' |
편집 전후의 차이 (edit_diff) | '@@ -1,34 +1,1 @@
-[[군론]](group theory)에서 라그랑주 정리(Lagrange theorem)는 임의의 유한군 G에 대해 그 부분군 H의 [[위수]](位數,order)는 G의 위수를 나눈다는 정리.
-이는 [[대칭군]] G 의 부분군 H가 ‘G 의 위수 = H 의 위수 · 잉여류의 갯수’ 라는 라그랑주정리를 조사할수있다
-==예==
-[[위수]](order) <math>3! \text{인} |G6| \text{또는} Ord(G6) = \left\{ (123), (231),(312), (132),(213),(321) \right\}</math>를 가정하면
-[[순환군]]으로부터 부분군 <math>H = \left\{ I,II,III ,IV\right\}</math>는
-:<math>I = \left\{ (312), (123),(231) \right\}</math>
-:<math>II = \left\{ (132) , (123) \right\}</math>
-:<math>III = \left\{ (213), (123) \right\}</math>
-:<math>IV = \left\{ (321), (123) \right\}</math> 에서
-{| class="wikitable"
-|-
-! <math>III = \left\{ (213), (123) \right\}</math> !! <math>III \cdot G</math> !! <math>G \cdot III </math> !! 잉여류(coset)
-|-
-| <math>G= \left\{ (123), (231),(312), (132),(213),(321) \right\} \text{중} \left\{ (123) \right\} </math>||<math>\begin{matrix}123 \cdot 123 =123 \\ 213 \cdot 123 = 213 \end{matrix} </math> || <math>\begin{matrix} 123 \cdot 123= 123 \\ 123 \cdot 213 = 213 \end{matrix} </math> || 좌잉여류(left corset) <math>gH(III \cdot G) = (123),(213)</math> <br /> 우잉여류(right corset) <math>Hg(G \cdot III ) = (123),(213)</math>는 서로 같다.
-|-
-| <math>G \text{중} (231) </math>|| <math>\begin{matrix}123 \cdot 231 = 231 \\ 213 \cdot 231 = 321 \end{matrix} </math>
- || <math>\begin{matrix}231 \cdot 123 = 231 \\ 231 \cdot 213 = 132 \end{matrix} </math>|| 좌잉여류(left corset) <math>gH(III \cdot G) = (231),(132)</math> <br /> 우잉여류(right corset) <math>Hg(G \cdot III ) = (231),(321)</math>는 서로 같지않다.
-|-
-| <math>G \text{중} (312) </math> || <math>\begin{matrix}123 \cdot 312 = 312 \\ 213 \cdot 312 = 132 \end{matrix} </math>
- || <math>\begin{matrix}312 \cdot 123 = 312 \\ 312 \cdot 213 = 321 \end{matrix} </math>|| 좌잉여류(left corset) <math>gH(III \cdot G) = (312),(321)</math> <br /> 우잉여류(right corset) <math>Hg(G \cdot III ) = (312),(132)</math>는 서로 같지않다
-|-
-| <math>G \text{중} (132) </math> ||<math>\begin{matrix}123 \cdot 132 = 132 \\ 213 \cdot 132 = 312 \end{matrix} </math>
- || <math>\begin{matrix}132 \cdot 123 = 132 \\ 132 \cdot 213 = 231 \end{matrix} </math>|| 좌잉여류(left corset) <math>gH(III \cdot G) = (132),(231)</math> <br /> 우잉여류(right corset) <math>Hg(G \cdot III ) = (132),(312)</math>는 서로 같지않다
-|-
-| <math>G \text{중} (213) </math> || <math>\begin{matrix}123 \cdot 213 = 213 \\ 213 \cdot 213 = 123 \end{matrix} </math>
- || <math>\begin{matrix}213 \cdot 123 = 213 \\ 213 \cdot 213 = 123 \end{matrix} </math>|| 좌잉여류(left corset) <math>gH(III \cdot G) = (213),(123)</math> <br /> 우잉여류(right corset) <math>Hg(G \cdot III ) = (213),(123)</math>는 서로 같다
-|-
-| <math>G \text{중} (321) </math> || <math>\begin{matrix}123 \cdot 321 = 321 \\ 213 \cdot 321 = 231 \end{matrix} </math>
- || <math>\begin{matrix}321 \cdot 123 = 321 \\ 321 \cdot 213 = 312 \end{matrix} </math>|| 좌잉여류(left corset) <math>gH(III \cdot G) = (321),(312)</math> <br /> 우잉여류(right corset) <math>Hg(G \cdot III ) = (321),(231)</math>는 서로 같지않다
-|}
-[[좌잉여류]](left corset)는 <math>gH </math>는 <math> \left\{ (123),(213) \right\} \text{ 와 } \left\{ (312),(321) \right\} \text{ 그리고 } \left\{(132),(231)\right\}</math> 이다. 좌잉여류(left corset)는 3개이다.
-: <math> |G| = |H| \cdot gH </math>
-: <math> 6 = 2 \cdot 3 </math>
-따라서 'G 의 위수 = H 의 위수 · 잉여류의 갯수'를 확인할수있다.
+#넘겨주기 [[라그랑주의 정리 (군론)]]
' |