무리수

無理數, irrational number

개요[편집 | 원본 편집]

실수유리수가 아닌 수로, 소수 꼴로 전개하면 순환하지 않는 무한소수가 된다.

무리수는 셀 수 없다.[1] 실수를 셀 수 없는데 유리수는 셀 수 있기 때문이다.

역사[편집 | 원본 편집]

이 문단은 비어 있습니다. 내용을 추가해 주세요.

무리수의 예[편집 | 원본 편집]

  • 원주율 [math]\displaystyle{ \pi }[/math]
  • 자연상수 [math]\displaystyle{ e }[/math]
  • 완전제곱수가 아닌 수의 제곱근: [math]\displaystyle{ \sqrt 2, \sqrt 3, \sqrt 5, \cdots }[/math]

트리비아[편집 | 원본 편집]

무리수를 처음 증명한 사람은 무리수의 존재를 용납할 수 없었던 당대 학자들에 의해 죽었다카더라. 실제로 이 이야기는 피타고라스학파의 히파수스와 관련된 것으로, 당시 피타고라스학파에서는 세상의 모든 수는 정수의 비율, 즉 유리수로 이루어져 있다고 주장하였었다. 허나 가장 간단한 형태인 각 변의 길이가 1인 정사각형의 대각선 길이 비율을 도저히 유리수로는 나타낼 수 없어서 무리수라는 개념이 나오기 시작하였다. 당시 이 문제를 제기하였던 히파수스가 죽었는지 쫓겨났는지는 알 수 없다.

동음이의어로 바둑 용어 중 억지로 둔 수를 뜻하는 무리수(無理手)가 있다. 아멜은 무리수를 뒀다! [1] 일상 회화에서 말하는 '무리수'는 당연히 이걸 말한다. (ex : 피타고라스 학파는 무리수(無理數)를 유리수(有理數)로 증명하려는 무리수(無理手)를 두었다.)

각주

  1. 무한 중 양으로서의 무한 참고.